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Abstract

The work presented here extends upon the best known universal quantum
circuit, the quantum Shannon decomposition proposed by Shende et al (2006
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain
the basis of the circuit’s design in a pair of Cartan decompositions. This
insight gives a simple constructive factoring algorithm in terms of the Cartan
involutions corresponding to these decompositions.

PACS numbers: 03.67.Lx, 03.67.−a, 03.67.Mn

1. Introduction

Quantum computation has attracted interest in recent years because it appears to violate the
strong form of the Church–Turing thesis; quantum computers seem to be fundamentally more
powerful than any possible classical computer [1]. In 1994 Peter Shor published efficient
quantum algorithms for the prime factorization of integers and the calculation of discrete
logarithms modulo arbitrary primes [2]. Lov Grover’s 1995 introduction of the quantum
search algorithm provided a polynomial speedup for unstructured searches [3]. As early as
1982 Richard Feynman pointed out the inherent difficulties in simulating quantum systems
with classical processors and suggested the possibility that the use of quantum information
processing could produce exponential speedups in such simulations [4]. Subsequently efficient
quantum algorithms for performing simulations of physical systems were developed [5–11],
vindicating Feynman’s prediction and further motivating theoretical and experimental work
towards realizing quantum computation.

In this paper we focus on the quantum circuit model of quantum computation [12]. In
this setting a quantum computation is a unitary transformation applied to n ideal qubits (we
ignore decoherence throughout). Given the irrelevance of global phases the set of all such
transformations is the special unitary group SU(2n). To represent an element of SU(2n) by
a circuit we must specify a fixed set of elementary gates which act on a fixed number of
qubits. A typical choice is the controlled-NOT (CNOT) and arbitrary one-qubit gates. The
length of a circuit is the number of elementary gates which it contains, however, because of
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the relative difficulty of multi-qubit operations we shall only consider the number of CNOT
gates in a circuit. There are several means of physically implementing a quantum computation
[13–18]. One qubit local operations and a few two qubit operations, such as the controlled-
NOT (CNOT) gate have been experimentally implemented [19–24].

The set of all allowed transformations for a quantum computer form the group SU(2n) and
a generic element of SU(2n) requires a circuit of length �(4n) gates. Specific transformations
corresponding to efficient quantum algorithms are of particular interest. A quantum algorithm
specifies a circuit family, with a circuit defined for each value of n. For a quantum algorithm
to be efficient each of these circuits must be composed of a number of operations bounded
above by a polynomial in n. Each of these operations must involve a subset of the n qubits
with size bounded above by a polynomial in the logarithm of n. Some algorithms, for example
the quantum Fourier transform, naturally decompose into elementary gates acting on qubits
[25]. In other cases, for example generic quantum Fourier transforms of functions on groups
other than Z/(2nZ) [26, 27], and in application of phase estimation to problems of quantum
simulation [8, 10], bounded size operations arise which do not naturally factor into elementary
gates. Before such quantum algorithms may be implemented experimentally one is therefore
faced with a problem of quantum compilation—given a set of unitary operators of fixed size
and an elementary gate set, constructively produce the quantum circuit realizing the operators.

It was shown by construction in 1995 that the set of one qubit operations and the CNOT
are universal: any unitary operation on any number of qubits can be realized as a circuit over
these gates. However, the number of CNOT gates required for n qubits was of order n34n

[28]. Since 1995 a number of advances have been made towards the CNOT optimization of
universal quantum circuits. We divide these into three categories: circuit optimization, Lie
algebra decompositions, and explicit algorithms.

Knill proved that the asymptotic CNOT cost of universal quantum circuits could be
reduced by a factor of n2 to �(n4n) [29]. In 2004 Shende, Markov and Bullock proved the
highest known lower bound on asymptotic CNOT cost,

[
1
4 (4n − 3n − 1)

]
[30], and Vartiainen

et al simplified the best existing circuit using Gray codes to achieve for the first time a leading
order CNOT cost of �(4n) (in fact, for large n, the cost was approximately 8.7 × 4n), a
multiplicative factor away from the highest known lower bound [31]. Later that year, the same
authors, along with Bergholm, presented a decomposition based on the cosine-sine matrix
decomposition (CSD) which produced asymptotic behavior scaling as 4n − 2n+1 [32]. For
more details on the CSD see [33, 34]. Vatan and Williams published a three CNOT universal
two qubit gate along with a proof that fewer CNOTs could never achieve universality [35],
and proposed a 40 CNOT universal three qubit gate which was, at the time, the best known
[36]. The current best known circuit decomposition applicable to systems of more than two
qubits was introduced by Shende, Bullock and Markov. Using intuition drawn from the
Shannon decomposition of classical logic circuit design, along with the application of some
circuit identities, Shende, Bullock and Markov have designed a universal circuit requiring
20 CNOTs in the three qubit case and 23

48 4n − 3
2 2n + 4

3 CNOTs asymptotically [37]. This
decomposition is known as the quantum Shannon decomposition (QSD), by analogy with the
Shannon decomposition of classical circuit design, and brings the upper bound on asymptotic
CNOT cost to within a factor of 2 of the highest known lower bound while halving the cost of
implementing a general three qubit gate to 20 CNOTs.

The second area of research is the exploration of the various ways of decomposing
the Lie algebra of the special unitary group. Essentially all of the work in this area has
made use of the Cartan decomposition. In the first part of the 20th century Cartan proved
that (up to conjugacy) there exist only three types of Cartan decomposition of the unitary
lie algebra, AI-III [38, 39]. The CNOT optimal two qubit circuit of Vatan and Williams
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[35] is, as described in detail below, based on a type AI Cartan decomposition. Khaneja
and Glaser proposed a scheme based on a Cartan decomposition of su(2n) (now known as
the Khaneja Glaser decomposition, or KGD) which lends itself to efficient recursive circuit
decompositions [40], and, working with Brockett, they showed that this scheme was time
optimal for NMR-based implementations of quantum computation [41]. Bullock identified
the Khaneja Glaser decomposition, as well as the CSD, as type AIII Cartan decompositions
and thereby established an equivalence between the two [42]. The KGD was used by Vatan and
Williams to produce their efficient two and three qubit circuits [36, 35]. Bullock and Brennen
and more recently Dagli, D’Alessandro and Smith have used type AI and AII decompositions,
including the concurrence canonical decomposition (CCD) and the odd-even decomposition
(OED), to study entanglement dynamics in quantum circuits [43, 44].

In order to make practical use of a CNOT-optimized quantum circuit or a novel Lie
algebra decomposition it is necessary to have an algorithm which can extract the parameters
which appear in the decomposition from an arbitrary unitary operation. Sousa and Ramos
provided an algorithm based on the generalized singular value decomposition for computing
the parameters in a CNOT-optimized two qubit circuit (the parameters for Vatan and Williams
circuit can be extracted from their algorithm with a little algebra, and other equivalent circuits
can be computed with a similar amount of effort) [45]. Just as Vatan and Williams’ work on
small numbers of qubits does not generalize to larger operators, however, Sousa and Ramos’
algorithm does not generalize beyond two qubits. Earp and Pachos provided a constructive
algorithm to perform a type AIII Cartan decomposition of an arbitrary n qubit operator
(they use the Khaneja Glaser decomposition specifically, but their algorithm can be modified
to implement other forms of the AIII decomposition) [46]. Earp and Pachos’ algorithm
relies on numerical optimization and a truncation of the Baker–Campbell–Hausdorff formula.
Nakajima et al published the first algorithm to compute Cartan decompositions of the unitary
group making explicit use of Cartan involutions [47]; their algorithm computes parameters for
circuits composed of uniformly controlled operations, similar to the circuits produced by CSD
based schemes. Their algorithm requires 4n − 2n−1 CNOT gates asymptotically. In the three-
qubit case this number can be reduced by taking advantage of the known CNOT-optimized
two qubit circuit developed by Vatan and Williams to produce a 44 CNOT universal three
qubit circuit (see figure 2). Since a lower bound of 1

4 (4n − 3n − 1) has been proven on the
asymptotic CNOT cost of arbitrary n-qubit operations with a lower bound of 14 CNOTs in the
three qubit case [30], this efficiency cannot be improved by more than a factor of 4. Circuits
produced by Nakajima et al’s algorithm are a factor of 2 longer than circuits obtained from the
quantum Shannon decomposition (QSD). However, the QSD lacks a constructive Lie algebra
based factoring algorithm in the published literature so far. It is to this issue we turn in the
remainder of the paper.

We first give some mathematical background introducing important definitions and
theorems which will be used later in the work. We then discuss the important special
cases of one and two qubit operations, and provide Cartan involution based algorithms for
extracting parameters for CNOT optimal quantum circuits from arbitrary one and two qubit
unitary operations. We then place the QSD, the best known circuit decomposition in terms of
CNOT cost, into a Lie algebraic context by showing it to be an alternating series of Cartan
decompositions. We define the Cartan involutions which correspond to these decompositions,
and we show that these involutions can be used recursively to obtain the QSD for unitary
operators on any number of qubits.
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2. Mathematical background

In the interest of making our presentation more self-contained, we briefly review some basic
definitions which will be important throughout this work. For a fuller presentation we refer
the reader to [48, 49]. Throughout, we use [ab] to denote the Lie bracket in general, and
the notation [a, b] to denote the Lie bracket for matrix algebras where it is the commutator
[a, b] = ab − ba.

Definition 1. If a subalgebra I of a Lie algebra g satisfies the condition that [xy] ∈ I for all
x ∈ g, y ∈ I then I is called an ideal in g.

Example 1. Clearly 0 and g are trivial ideals of g. An important example of an ideal is the
derived algebra of g, denoted [gg], which consists of all linear combinations of brackets [xy],
with x, y ∈ g.

Definition 2. A non-abelian Lie algebra U (i.e. [UU] �= 0) in which the only ideals are 0 and
all of U is called simple. Observe that since the derived algebra is an ideal, for any simple
Lie algebra S the derived algebra is equal to the entire algebra: [SS] = S.

We may define a sequence of ideals, the derived series of an algebra A, as follows:

A(0) = A, A(1) = [AA], A(2) = [A(1)A(1)], . . . , A(i) = [A(i−1)A(i−1)], . . . .

If A(n) = 0 for some n we call A solvable. Observe that all abelian Lie algebras are solvable,
while all simple Lie algebras are nonsolvable. We shall simply state the fact that every Lie
algebra contains a unique maximal solvable ideal (maximal in the sense that it is contained in
no larger solvable ideal), which is referred to as the radical of the algebra. If L is a non-zero Lie
algebra and Rad L = 0, we call L semi-simple. This condition for the semi-simplicity of a Lie
algebra is equivalent to the condition that the algebra is the direct sum of simple Lie algebras.
Most of the Lie algebras which occur in physics are semi-simple, and there exists a very
rich and well-developed structure theory of semi-simple Lie algebras which we shall exploit
throughout the remainder of this work. The essential structure theorem which lies behind both
the CSD, the KGD, and as we shall show later the QSD, is the Cartan decomposition.

Definition 3 . A Cartan decomposition of a real semi-simple Lie algebra g is a decomposition
g = m ⊕ k where m = k⊥, for which k and m satisfy the commutation relations:

[k, k] ⊂ k (1)

[m, k] = m (2)

[m,m] ⊂ k. (3)

A few further features of the Cartan decomposition are essential.

Definition 4. Consider a semi-simple Lie algebra with Cartan decomposition g = m ⊕ k and
a subalgebra h of g contained in m. Because [m,m] ⊂ k, h must be Abelian. We refer to a
maximal Abelian subalgebra contained in m as a Cartan subalgebra of g and k.

Definition 5. The Lie group G acts on its Lie algebra g through a conjugation, known as the
adjoint action, AdG : g → g defined by

AdUX = U †XU (4)
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for U ∈ G and X ∈ g, and for K = exp(k) we define the Adjoint orbit of X to be

AdKX =
⋃
k∈K

AdkX. (5)

Any two Cartan subalgebras h and h′ are related to one another through the adjoint action
of the group G on its Lie algebra g. With these definitions, we now state

Theorem 1. For any two maximal Abelian subalgebras h and h′ in m there is an element
k ∈ K such that Adk(h) = h′. Furthermore, the adjoint orbit of h is equal to m, i.e.

m =
⋃
k∈K

Adkh. (6)

Finally, we come to the key definition in this paper:

Definition 6. Given a semisimple Lie algebra g with Cartan decomposition g = m ⊕ k and a
Cartan subalgebra h, let A = exp(h) and K = exp(k), then G = KAK is called a (global)
Cartan decomposition of the semi-simple Lie group G.

The theorem which establishes the existence of such a decomposition for any semi-simple
Lie group is proved in [48–50]. The G = KAK structure has been used widely in work on
quantum circuit decompositions in the past, most notably in Khaneja and Glaser’s work, as
well as in CSD based circuit designs (as explained by Bullock [42]) and in subsequent work
based on these decompositions (cf e.g. [32, 36, 40, 44]). The task of computing the Cartan
factors for a specific unitary matrix is greatly facilitated by the existence of Cartan involutions.

Definition 7. A Cartan involution, denoted θ , is a non-identity automorphism on a Lie algebra
u such that θ2 is the identity, and the global Cartan involution has the equivalent action on
U = exp(u) with the property that

θ(g) =
{

g g ∈ k

−g g ∈ m,
�(G) =

{
G G ∈ exp(k)

G† G ∈ exp(m).
(7)

In the case of su(n) there are only three classes of Cartan decomposition, denoted AI,
AII and AIII. The k subalgebras of su(n) are isomorphic to so(n), sp( n

2 ) and s[u(p) ⊕ u(q)]
for any p + q = n for AI, AII and AIII decompositions, respectively (AII only exists for
unitary groups acting on an even number of dimensions, a common situation in quantum
information where the state-spaces of n-qubit registers have dimension 2n) [44]. In this work
we are particularly concerned with decompositions of type AI and AIII because in certain
important cases there are straightforward and efficient means of physically implementing real
orthogonal or direct sum unitary operators. Since we are concerned in this work only with the
unitary group, whose elements satisfy the condition U−1 = U †, we may exploit the Cartan
involution to factor matrices.

Theorem 2. For any G ∈ SU(2n) with Cartan decomposition G = KM,K ∈ exp(k),M ∈
exp(m),M2 is uniquely determined by M2 = �(G†)G.

Proof. �(G†)G = �(M†K†)KM = �(M†)�(K†)KM = MK†KM = M2. �

A KAK type decomposition of the special unitary group is desirable because there is a
considerable amount of freedom in selecting the k subalgebra and a Cartan subalgebra h, and
with appropriate selection of k and h the factors returned for an arbitrary unitary operator are
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of a form which may readily be translated into physically realizable quantum gate sequences.
Indeed, the Khaneja–Glaser decomposition has been shown to be time optimal for NMR
quantum computing, as compared to other published decompositions [41]. The existence
of this decomposition is of no practical use, however, without an algorithm for explicitly
calculating the factors K1,K2 and A for a given specific unitary matrix.

Notation. When discussing the generators of the Lie algebras of multi-qubit operator groups
we will use a streamlined notation. We define ZI = σz ⊗ 1, IX = 1 ⊗ σx, ZY = σz ⊗ σy and
so on, where σx, σy and σz are the familiar Pauli spin matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Additionally, we define X(n) to be a Pauli-x (likewise y and z) acting on the nth qubit, i.e.
Z(3) = ZII.

3. Special cases: one and two qubits

3.1. One qubit factoring: Euler angle decomposition of SU(2) as a Cartan decomposition

We now provide a simple, illustrative example of a Cartan decomposition and an involution
based algorithm for converting an arbitrary one qubit unitary operator into a Cartan inspired
circuit. This is the simplest possible case of a Cartan decomposition of a unitary group,
however, the factoring of multi-qubit gates inevitably reduces in the end to a series of one-
qubit gates which must themselves be decomposed. The structure of the algorithm for this
simple example is identical to the more involved cases to follow.

Definition. The Lie algebra su(2) is generated by the Pauli spin matrices. The decomposition
su(2) = k ⊕ m where k = span

R
i{Y } and m = span

R
i{X,Z} satisfies the criteria to

be a Cartan decomposition. Furthermore, either span
R

i{X} or span
R

i{Z} is a maximally
abelian subalgebra of su(2) contained in m. Thus the decomposition of SU(2) given by
U = eiAY eiBZ eiCY is a Cartan decomposition. Using the fact that SU(2) is the double
cover of SO(3), we recognize this Cartan decomposition as the Euler angle decomposition of
three-dimensional rotations. We now explicitly calculate the Euler angle decomposition of an
arbitrary single qubit unitary using a Cartan involution.

The Cartan involution corresponding to our chosen Cartan decomposition (k =
span

R
i{Y },m = span

R
i{X,Z} and h = span

R
i{Z}) is θ(u) = YuY,�(U) = YUY . We

compute the Cartan KAK decomposition of an arbitrary G ∈ SU(2) as follows:

(1) We exploit theorem 2 to calculate M2 = YG†YG.
(2) Diagonalize M2 = PDP†. Note that as a diagonal element of SU(2),D must be of the

form eiαZ , i.e. D ∈ exp(h), and, furthermore, theorem 1 implies that P ∈ exp(k).
(3) We now have M = PD1/2P † and we may find K = GM†.
(4) This constitutes a complete decomposition of G into the form eiAY eiBZ eiCY : G =

KPD1/2P †, and it is trivial to extract the angles A,B and C from the matrix forms of these
operators.

3.2. Two qubit factoring from a Cartan decomposition

The task of factoring two qubit operators is facilitated by several unique properties of SU(4).
Firstly, SO(4) is the Lie group corresponding to the k subalgebra of su(4) under a type
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AI involution. SO(4) and the group of local operations acting on two qubits separately,
SU(2) ⊗ SU(2), share a simply connected covering group, Spin(4). In fact, elements of
SO(4) are mapped uniquely onto elements of SU(2) ⊗ SU(2) by changing to the ‘magic
basis’ of Bell states through conjugation by the matrix [35]:

B = 1√
2

⎛
⎜⎜⎝

1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

⎞
⎟⎟⎠ . (8)

There is no equivalent connection between SO(2n) and SU(2n−1) ⊗ SU(2n−1) for n > 2.
As a result of this close connection between the type AI Cartan decomposition of SU(4) and
the group of local operations (which may be implemented without the use of CNOT gates) it
is possible to construct a universal two qubit circuit requiring only three CNOT gates in the
worst case (see figure 1) [35, 45, 51, 52].

Definition. The involution for type AI Cartan decompositions of su(N) is given by

θ(u) = −uT for u ∈ su(N), �(U) = (U−1)T = U ∗ for U ∈ SU(N). (9)

The involution given by (9) fixes a k-subalgebra corresponding to so(4), k =
span

R
i{IY,XY,ZY, Y I, YX, YX}, and the diagonal elements of m, i.e. h =

span
R

i{IZ,ZI, ZZ} constitute a Cartan subalgebra. Furthermore, as discussed in the
introduction, a transformation to the basis of Bell states (the ‘magic basis’) maps this k

subalgebra onto su(2) ⊕ su(2) and also maps the maximal abelian subalgebra of diagonal
matrices onto the subalgebra chosen by both Khaneja and Glaser and Vatan and Williams,
h′ = span

R
i{XX, YY,ZZ}. As a result, we may use the Cartan involution of equation (9) and

matrix diagonalization to compute the parameters necessary for Vatan and Williams two-qubit
CNOT optimal circuit.

The parameters for an arbitrary two qubit unitary U may be calculated as follows:

(1) We define a new operator U ′ = B†UB where B is defined in equation (8).
(2) Compute M2 = �(U ′†)U ′ = (U ′†)∗U ′ = U ′T U ′, which is in the exponentiation of m.
(3) Diagonalize: M2 = PDP † where D ∈ exp(h) and P ∈ SO(4).
(4) Find D

1
2 and hence K ′ = U ′PD− 1

2 P †.
(5) K ′P and P † are both elements of SO(4), so K1 = BK ′PB† and K2 = BP †B† ∈

SU(2) ⊗ SU(2) and A = BD
1
2 B† ∈ exp(h′). Hence

K1AK2 = BK ′PB†BD
1
2 B†BP †B† = BK ′PD

1
2 P †B† = BU ′B† = U (10)

is a Cartan decomposition of U of the type used by Vatan and Williams.
(6) Simple algebraic manipulations of D

1
2 yield the parameters α, β and γ which appear in

the center portion of the circuit in figure 6 of [35] and the partial trace may be used to
separate K1 and K2 into the local operations of which they are composed, which may
then be decomposed as described in the previous section.

4. The QSD from Cartan involutions

In this section we give a Cartan decomposition and constructive algorithm for obtaining
the QSD (recall that it is not possible to exceed the QSD’s efficiency by even a factor of
2 for any number of qubits). This algorithm is constructive and produces circuits which
are less than half as long as the constructive algorithms of Nakajima et al [46, 47]. The

7
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UA Rz(2γ − π
2 ) • Rz(−π

2 ) VA

UB Rz(π2 ) • Ry(π2 − 2α) Ry(2β − π
2 ) • VB

Figure 1. The CNOT optimized universal two qubit circuit; UA, UB, VAandVB may be
decomposed into three single qubit rotations each by the Euler angle decomposition given above,
and VA and UB may absorb the z-rotations preceding and following them respectively yielding a
circuit consisting of three CNOT gates and 15 single qubit rotations.

principle difference between those algorithms and the QSD is that they proceed by reducing an
n-qubit circuit to a circuit involving uniformly controlled n − 1 qubit gates. These uniformly
controlled gates are then reduced to controlled and uncontrolled n − 1 qubit gates. The
uncontrolled n − 1 qubit gates, and the controlled n − 1 qubit gates are then factored
again using the Cartan decomposition. However, all gates obtained by this decomposition
must be controlled, leading to a doubling of the number of CNOTs over the best known
decompositions. This problem arises because only part of the decomposition is handled at
the Lie algebra level—after the first decomposition circuit identities are introduced before the
Cartan decomposition is applied again. In what follows we take the Lie algebraic point of view
throughout: the uniformly controlled operations are treated as a Lie-subgroup, and a Cartan
decomposition of the corresponding Lie-subalgebra is obtained. This Cartan decomposition
results in uncontrolled n − 1 qubit operations which remain to be factored, and so the first
part of the algorithm of Nakajima et al can be applied again. The resulting algorithm is an
alternating pair of Cartan decompositions, each of which has a simple Cartan involution which
enables the factors to be obtained explicitly. Inspection of the resulting procedure reveals
precisely the QSD of [37] and so this algorithm gives a Cartan decomposition based derivation
of the QSD and a Cartan involution based explicit algorithm for obtaining the QSD.

Because every other step in our recursive procedure is identical to the first step of
Nakajima et al’s algorithm, we first define the corresponding components k and m of the
Cartan decomposition of SU(2n), and the Cartan subalgebra h. The k-subalgebra is of type
AIII: the direct sum of two lower dimensional unitary Lie algebras k = s[u(p) ⊕ u(q)] where
p + q = 2n.

Definition. For the n-qubit case the decomposition is defined by

k = span
R
{A ⊗ Z,B ⊗ 1, iZ(n)|A,B ∈ su(2n−1)} (11)

m = span
R
{A ⊗ X,B ⊗ Y, iX(n), iY (n)|A,B ∈ su(2n−1)}. (12)

Definition. The Cartan involution is

θ(u) = Z(n)uZ(n), �(U) = Z(n)UZ(n). (13)

Hence we may compute the global Cartan decomposition G = KM of SU(2n) as in
theorem 2.

We must now define a Cartan subalgebra h contained in m. Here Nakajima et al make a
different choice of h to that used by Khaneja and Glaser in [40, 41]. Recall that all maximal
Abelian subalgebras share an adjoint orbit, namely m itself, and that one may, as a result,
switch between them with relative ease.

Definition. Nakajima et al choose to define

h = span
R
{|j 〉〈j | ⊗ iσx |j = 0, . . . , 2n−1 − 1}. (14)

8
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U1 U †
1V1 U2 U †

2V2

• Rx •

=

Rz Ry Rz Rz • Rz Ry Rz Ry Rz Rz

Rz Ry Rz • Ry Ry • Rz Ry Rz Ry Rz Rz

• • • •
Rz Rz • Rz Ry Ry Rz Rz

• Ry Ry Ry Ry • Rz Ry Ry Rz Rz

• • • • • • • • • •
• •

• •

Rx H H Rx H H Rx H H Rx H H

Rz Ry Rz Rz • Rz Ry Rz Ry Rz Rz

Rz Ry Rz • Ry Ry • Rz Ry Rz Ry Rz Rz

• • • •
Rz Rz • Rz Ry Ry Rz Rz

• Ry Ry Ry Ry • Rz Ry Ry Rz Rz

• • • • • • • • • •

Figure 2. A simplified three qubit circuit based on Nakajima et al’s algorithm: uniformly controlled
two qubit operations are built using Vatan and Williams’ optimal two qubit circuit to produce a
universal 44 CNOT three qubit circuit with a constructive algorithm. The operator represented here
is (U1 ⊗ |0〉〈0| + V1 ⊗ |1〉〈1|)(Rx1 ⊕ Rx2 ⊕ Rx3 ⊕ Rx4)(U2 ⊗ |0〉〈0| + V2 ⊗ |1〉〈1|), in accordance
with the NKS algorithm.

The algorithm of [47] based upon this choice of h corresponds to a decomposition of
an n-qubit quantum logic circuit into 2n−1 − 1 uniformly controlled one qubit elementary
rotations, requiring 4n − 2n−1 CNOT gates.

Note that Nakajima et al Cartan decompose SU(2n) yielding two elements of SU(2n−1)⊕
SU(2n−1). These are then treated as if they were four elements of SU(2n−1) with no further
special structure, and precisely the same Cartan decomposition is applied to each of these
smaller unitary operators. This approach is implicitly based on the assumption that the tensor
sum of Cartan decompositions is the Cartan decomposition of tensor sums. This assumption,
however, can easily be proven to be false. Thus, we now set out to find a Cartan decomposition
of the Lie algebra s[u(2n−1) ⊕ u(2n−1)].

Consider the basis of s[u(2n−1)⊕u(2n−1)]: span
R
{A⊗Z,B ⊗1, iZ(n)|A,B ∈ su(2n−1)}.

Definition. It is straightforward to confirm that the decomposition

k′ = span
R
{A ⊗ 1, iZ(n)|A ∈ su(2n−1)}

m′ = span
R
{A ⊗ Z|A ∈ su(2n−1)}

satisfies the definition of a Cartan decomposition for s[u(2n−1) ⊕ u(2n−1)]. Note that
Z(n) represents a phase and commutes with every element of k′, indeed it commutes with
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every element of s[u(2n−1) ⊕ u(2n−1)]. We may factor out the Z(n) component from
s[u(2n−1) ⊕ u(2n−1)] to get su(2n−1) ⊕ su(2n−1). If we define k̃′ = k′\span

R
Z(n), then

su(2n−1) ⊕ su(2n−1) = k̃′ ⊕ m′ is a Cartan decomposition.

Definition. A Cartan involution to separate these subsets is θ(m) = X(n)mX(n). Furthermore
we find that if we apply this involution to an element of s[u(2n−1) ⊕ u(2n−1)] which has not
had its Z(n) phase factored out, the phase lands in the −1 eigenspace. We must also choose
a Cartan subalgebra in m′; for simplicity, we choose the set of diagonal elements of m′:
h′ = span

R
i{IZZ, ZIZ, ZZZ} in the three qubit case.

We now compute the Cartan KAK factors of an arbitrary element (G) of S[U(2n−1) ⊕
U(2n−1)]. First we use the method of theorem 2 to compute the component of G not in
exp(̃k′), i.e. we compute M̃2 = M2P 2 where M is from G = KM and P is the Z(n)

factor. Next we diagonalize M̃2—this diagonal matrix is A2P 2, where M = LAL† for
A ∈ exp(h′), L ∈ exp(̃k′). Finally we take the square root of this diagonal matrix and
compute K. To be completely explicit, we present here the algorithm.

(1) Compute M̃2 = M2P 2 = �(G†)G where �(U) = X(n)UX(n) (see theorem 2).
(2) Compute the eigenvalue decomposition of M̃2: let M̃2 = LD2L† be the eigenvalue

decomposition. Since D2 is diagonal and unitary it must be an element of the
exponentiation of h′ ∪ span

R
Z(n) and L must be an element of exp(̃k′).

(3) Compute Ã = D1/2 = AP where A ∈ exp(h′) and P is the phase term. Each entry in the
diagonal unitary D is of the form eiθ , so we may simply replace each of these entries with
e

iθ
2 and we have Ã. Now M̃ = LÃL†.

(4) Compute K = GM̃†. We have G = P(KLAL†) where P commutes with all of the
other factors and therefore may be placed according to convenience, K,L ∈ exp(k′) and
A ∈ exp(h′), that is K and L are general (n − 1) qubit operations which leave the low
qubit fixed and A is a uniformly controlled z-rotation on the low qubit.

The operations in exp(k′) do nothing to the nth qubit and can perform any unitary operation
on the remaining n − 1 qubits, i.e. we can treat them precisely as we would any element of
SU(2n−1), and we may absorb the diagonal P into A and implement Ã = AP according to
the decomposition offered in [37], which leaves us with a uniformly controlled z-rotation on
the low qubit and a diagonal operator acting on the remaining qubits which may simply be
absorb into a neighboring n − 1 qubit operation.

Given an operation on any number of qubits n, we apply Nakajima et al’s algorithm
to produce two elements of S[U(2n−1) ⊕ U(2n−1)], then we apply the algorithm we have
just described to these uniformly controlled operations to yield four elements of SU(2n−1) to
which we apply the NKS algorithm, and so on, until we are left with 4n−2 two qubit operations,
to which we apply the AI algorithm described earlier. This recursive decomposition scheme
generates a complete constructive factorization (see figure 3 for the three qubit case and figure 4
for an illustration of the recursion applied to four qubits). Using no further refinements, this
algorithm yields a 24 CNOT three qubit gate and has an asymptotic CNOT cost of 9

16 4n − 3
2 2n,

an improvement of nearly a factor of 2 over the standard NKS circuit.

5. Conclusions and future work

This scheme of alternating Cartan decompositions of su(2n) with Cartan decompositions
of s[u(2n−1) ⊕ u(2n−1)] is the best known circuit decomposition paradigm. This chain
of decompositions yields precisely the QSD circuit structure that Shende, Bullock and
Markov derived by analogy from the classical Shannon decomposition in [37]. Further
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U1 U2 U3 U4

Rz Rx Rz

=

Ry Rz Ry Rz • Ry Rz Ry • •
Ry Rz Ry • Ry Ry • Ry Rz Ry • •

Rz Rz Rz Rz

Ry Rz Ry Rz • Ry Rz Ry

Ry Rz Ry • Ry Ry • Ry Rz Ry

• •

• •

Rx H H Rx H H Rx H H Rx H H

Ry Rz Ry Rz • Ry Rz Ry • •
Ry Rz Ry • Ry Ry • Ry Rz Ry • •

Rz Rz Rz Rz

Ry Rz Ry Rz • Ry Rz Ry

Ry Rz Ry • Ry Ry • Ry Rz Ry

Figure 3. The 24 CNOT universal three qubit quantum circuit derived without further simplification
from the Cartan decomposition of s[u(2n−1) ⊕ u(2n−1)].

U1 U2 U3 U4 U5 U6 U7 U8

Rz Rx Rz Rz Rx Rz

Rz

U9 U10 U11 U12 U13 U14 U15 U16

Rz Rx Rz Rz Rx Rz

Rx Rz

Figure 4. A block diagram of the QSD applied to a four qubit operation; note that it consists of
only three thrice controlled rotations on the low qubit and four general three qubit QSD circuits on
the higher qubits.

slight improvements can be made to the CNOT cost of the tensor sum Cartan circuit by the
application of the identities given in appendix A and theorem (14) of [37], reducing the overall
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cost of a three qubit gate to 20 CNOTs, and the asymptotic cost to 23
48 4n − 3

2 2n + 4
3 , but the

decomposition is still fundamentally the same, and these simplifications can be incorporated
into the constructive algorithm presented here with very little effort. By constructing the QSD
from its Lie algebraic roots this work puts the QSD—the best known generic quantum circuit
decomposition, less than a factor of two from the highest lower bound—into its proper Lie
algebraic context as a series of Cartan decompositions, and provides a new Cartan involution
based algorithm to implement the QSD explicitly.

Another significant advantage of this sort of decomposition, especially in light of the
fact that historically few-qubit circuit optimization has at times advanced ahead of asymptotic
circuit optimization (cf [36]), is that any future improvements to few-qubit efficiency can
simply be plugged into this algorithm at its lowest level of recursion (where we turn to
Vatan and Williams’ circuit in this case) and translated instantly into improved asymptotic
gate counts. For example, one could use existing methods (e.g. [53, 54]) to test whether
a particular two-qubit gate has non-generic structure which means that it requires one or
two CNOT gates rather than three. Substantially shorter circuits could be obtained by the
application of such methods, and by their extension to three qubit circuits.
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